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Note 

A Fourier Analysis of Some Difference Schemes 

for the Laplace Equation in a System of Rotational Symmetry 

Fourier techniques are used to investigate some difference schemes for the Laplace 
equation Au@, z) = 0 in cylindrical coordinates. It is shown that any errors in the boundary 
data will give rise to a “boundary layer” around the symmetry axis, when boundary values 
are given on this axis, instead of using the symmetry condition. The star 5-, star 9-, and 
compact 9-point formulas with symmetry at the axis are also compared. The first one is the 
least accurate, while the compact scheme is better by at least a factor of 100 than the star 
9-point scheme for the stepsize h = l/20. 

1. INTRODUCTION 

We will use Fourier techniques to investigate some difference schemes for the 
Laplace equation 

in cylindrical coordinates, where the z-axis is the axis of symmetry. These schemes 
have been much used, e.g., in numerical electron optics. 

First we consider the usual star Spoint formula when we give boundary values on 
the z-axis, instead of using the symmetry condition 

&(O, zyar = 0. (2) 

The corresponding mathematical problem is then overdetermined by the new 
boundary values. It is shown that any errors in the boundary data will give rise to 
a “boundary layer” around the z-axis. The method with the extra boundary conditions 
was used by Groth et al. [I, 21 and Besev et al. [3] in calculations on magnetic lens 
spectrometers. 

In Section 3 we consider the broad star 9-point formula and the compact 9-point 
formula with symmetry at the z-axis. A comparison with the star Spoint formula 
shows that the broad scheme is significantly better. The compact scheme is in its 
turn at least a factor of 100 better than the broad star 9-point formula. The latter 
formula has been extensively used by Natali et al. [4, 51 in calculations on electric 
two-tube lenses. 

A classical text which discusses finite difference methods for elliptic equations is 
Forsythe and Wasow [6]. 
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2. THE EFFECT OF USING THE SYMMETRY AXIS AS A BOUNDARY 

We will here study the difference solution to the star 5-point formula for the 
Laplace equation (I), with boundary values ~(0, z) given also on the z-axis. Note 
that a curve in the (r, z)-plane which starts and ends on the z-axis, but does not include 
this, is a closed boundary of the region, because of the rotational symmetry around 
the z-axis. The mathematical problem is therefore overdetermined by the boundary 
values ~(0, z) and does not have any solution, which we will demonstrate below. 

Let v(k, I) be an approximation to u(v, z), where r = k * h, z = I * h. The star 
5-point formula for Eq. (1) is for k 3 1 

(v(k + 1,1) - 2 * u(k, l) + u(k - 1,1))/h” 

+ (u(k + 1, I) - v(k - 1,1))/(2 . k . h2) 

+ (v(k, I + 1) - 2 * u(k, l) + u(k, I - l))/h2 = 0. (3) 

On the z-axis Eq. (I) reduces to the form 

2 . @u(0, z) + a2u(0, z, = 0 
at-2 az2 (4) 

when the symmetry condition Equation (2) is used, instead of giving the boundary 
values ~(0, z). We therefore obtain for k = 0 

2 * (2 * u( 1,1) - 2 * v(0, /))/I22 
+ (u(0, I + 1) - 2 * u(0, Z) + u(0, I - l))/h2 = 0. (5) 

The difference equations (3) and (5) approximate the Laplace equation (1) with a 
truncation error 0(h2). 

We now assume that u(r, z) can be expressed as a Fourier integral 

ti(r, o) - exp(iwz) dw 

where ti(r, 0) is the Fourier transform of u(r, z), or alternatively as a Fourier series 

u(r, Z) = E ti(r, k) * exp(ikwz) 
k=-cc 

where C(r, k) are the Fourier coefficients of u(r, z). This is strictly valid only for 
problems where the region is an infinite strip along the z-axis with boundary data in 
g2, or problems which are periodic in z, with the period L = 27~Jw. However, in 
many applications as, e.g., in the design of magnetic and electric lens systems in 
numerical electron optics, either of the two conditions is approximately satisfied. 

In the work described in [l-3] and in [4, 51 the Laplace equation (1) is solved 
numerically in a rectangle centered around the z-axis. The boundary values of u at 
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the short sides z = a and z = b are constants or very nearly constants. If these two 
approximate constants are different, let us first subtract a linear function A * z + B 
from the boundary values. A and B are chosen such that the new constants for z = (I 
and z = b are the same. Then the new problem has boundary data which are either 
in .ZZ or are periodic in z. The difference equation for the new problem can now be 
studied using Fourier techniques. But A * z + B is an exact solution to both the 
Laplace equation (1) and to any reasonable difference equation which approximates 
it. Therefore the results of the analysis of the modified problem are directly applicable 
to the original problem. 

Fourier analysis of the Laplace equation (I) gives 

which has the general solution A + l&wr) + B * K,,(wr), where I, and K, are the modi- 
fied Bessel functions of order zero. But &(wr) = 1 + Us) and K,,(M) = 
-log(wr/2) + O((CM)~) according to relations 9.6.12 and 9.6.13 in [7]. From this we 
see that the we cannot in general specify both ti(R, w) and C(O, w) to obtain values for 
A and B, i.e. we cannot in general specify both u(R, z) and ~(0, z). We want to obtain 
a solution which is finite everywhere. Therefore B = 0 must hold. Thus it is possible 
to give values on the z-axis only if precisely the solution ~(0, z) resp. fi(0, w) to the 
usual boundary value problem with symmetry at the z-axis is given. 

Fourier analysis of the difference equations (3) and (5) now gives 

(1 + 1/(2/k)) * G(k + 1, w) - (4 - 2 * cos(wh)) . B(k, 0) 
+ (1 - 1/(2k)) * 6(/k - 1, w) = 0 for 1 <k<ZV--1 (6) 

and when the symmetry condition is used 

8(1, w) - (3 - cos(wh))/2 * G(O, w) = 0 (7) 

where B(k, UJ) is the Fourier transform of the difference solution v(k * h, I * h) = 
u(r, z). We will in the following always use R = 1, i.e., N . h = 1. 

The difference equations (6) and (7) form a system of linear equations which is 
easily solved using a standard band-solver, see, e.g., [8]. Figure 1 shows the solution 
to Eq. (6) when 6(0, w) = 1 and 6(N, w) = 0, for N = 20. In Fig. 2 the corresponding 
curves are shown for N = 80. Note that all the curves are very steep, also the curve 
for w = 0. The mathematical problem corresponding to the difference equation (6) 
used in Figs. l-3 does not have any solution, with the boundary data used there, 
as was shown above. Therefore the difference solution does not approach any limiting 
curve in these cases, when the stepsize h is decreased. Figure 3 shows the solution to 
Eq. (6) when G(O, o) = 0 and 8(N, w) = 1, for N = 20. Note here the behavior of 
the solution for small r-values and low frequencies. 

The difference solution obtained when the symmetry condition equation (7) is 
used is shown in Fig. 4. Here @N, o) = 1 and N = 20. The curves are all equal to 
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N:20 

F[G. 1. The difference solution to the Fourier-transformed star Spoint formula for the Laplace 
equation in cylindrical coordinates. The boundary values are 6(0, w) = 1 and @(l, w) = 0. The 
step size h is given by N 9 h = I, here N = 20. Note that all the curves are very steep, as is the curve 
for w = 0. The crosses in this and all the following figures denote the calculated values. 

FIG. 2. The same as in Fig. 1, but N = 80. The mathematical problem corresponding to the 
difference equation used in Figs. l-3 does not have any solution, with the boundary data used there. 
Therefore the difference solution does not approach any limiting curve as the step size h is decreased 
The crosses denoting the calculated values have been omitted here. 
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FIG. 3. The same as in Figs. 1 and 2, but the boundary values here areG(0, w) = 0 and 6(1, w) = 1. 
Note the behavior of the solution for small r-values and low frequencies. 

FIG. 4. The same as in Figs. l-3, but the boundary data here are the symmetry condition %(r, w)/ 
ar = 0 for r = 0, and @(l, W) = 1. The curves are all equal to the mathematical solution Z,(wr)/ZO(w) 
with good accuracy. 
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the mathematical solution ZO(~r)/ZO(o(w) with good accuracy. A comparison with Fig. 3 
shows that the two figures are very similar for w 3 4 except for small r-values. 

Let us now examine the work described in [1,2, 31 more closely. The boundary 
values zi(r, z) were there all measured data on the z-component of the field in a 
magnetic lens spectrometer. The z-axis was used as a boundary with the boundary 
values ~(0, z) and the symmetry condition equation (2) was not used at all. If the 
measuring errors in the boundary data are negligibly small this problem has a mathe- 
matical solution and a smooth numerical solution. Let a(~, .z) = U(Y, z) + E(T, z) 
where (r, z) denotes a point on the boundary, E(T, z) is the measuring error in U(Y, z) 
and U(T, z) is the correct (unknown) value. The boundary data U(T, z) correspond to 
a solution U, which satisfies the Laplace equation (1). 

Since the differential equation (1) is linear in U, we can separately analyze the effect 
of the errors l (r, z), on the solution to the difference equation. We will here only con- 
sider the Fourier transform g(r, w), since we have no data on the size and distribution 
of E(T, z). The measuring errors consist of systematic and random errors, which 
correspond mainly to low frequencies (w m 0, 1, 2) and high frequencies respectively. 
The difference solution g(r, UJ) is equal to c(O, w) .6(r, o) from Fig. 1 + <( 1, w) . S(r, w) 
from Fig. 3. We now see that the total solution t”(~, w) will vary rapidly close to the 
z-axis for all frequencies w. The total influence E(T, z) of the errors in the boundary 
data, is therefore not smooth close to the z-axis, but a “boundary layer” is formed. 

The errors ~(0, z) are in [1,2,3] smaller than ~(1, z) since the measurements are 
easier to carry out on the z-axis. The formation of the boundary layer is therefore 
not very harmful for the total accuracy in this case. It is quite clear, however, that 
nothing at all is gained by using the boundary values ~(0, z) instead of the symmetry 
condition equation (2). The number of storage locations in the computer is also exactly 
the same. In addition, the measuring work is reduced in the symmetric case. Note 
that according to Fig. 1 the errors ~(0, z) have a very local influence on the total error. 
The high accuracy in the boundary data on the z-axis is therefore of little practical 
use. 

In the work described in [1,2, 31 the v-component of the magnetic field strength 
was also calculated. The differential equation 

was solved using a 5-point formula similar to Eqs. (3), (5). However, u vanishes iden- 
tically on the z-axis because of the rotational symmetry (t((r, z) = A(z) - r + U(13)). 
This is therefore an ordinary elliptic boundary value problem and no “boundary 
layer” will occur at the z-axis. 

Let us now consider the corresponding problem in a Cartesian ( y, z)-coordinate 
system, where the z-axis is the symmetry axis. Fourier analysis of the Laplace equation 

a24y, 4 + a24y, 4 = 0 
aY2 a22 
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now gives 

WY, WI 
w 

- w2 * ti(y, u) = 0. 

The general solution to this differential equation is A . cosh(wy) + B * sinh(oy). 
For example, the solution corresponding to the boundary values ti(O, w) = 1, 
ti(1, w) = 0 is ti(y, W) = cosh(wy) - sinh(wy)/tanh(w) for w # 0 and ti(y, 0) = 1 - y. 
Therefore if boundary data are given on the symmetry axis in a Cartesian system the 
mathematical and numerical problems both have smooth solutions. However, the 
symmetry of the problem is then not used at all. 

3. A COMPARISONBETWEEN THE STAR 5-, STAR 9-, AND COMPACT g-POINT FORMULAS 

If we calculate the difference solution to the Fourier transformed star 5-, star 9-, 
or compact g-point formulas for the Laplace equation (1) using the symmetry con- 
dition equation (2) for r = 0 and 8(1, w) = 1, we obtain in each case the curves 
shown in Fig. 4. All the difference solutions therefore closely approximate the mathe- 
matical solution ti(r, w) = l,,(wr)/&,(w). Below we will calculate the error e^(r, w) = 
1 e(r, w) - lo(wr)/lo(w)l for different frequencies w, for the three Fourier-analyzed 
difference schemes. This enables us to compare the efficiency of the methods. This 
comparison holds strictly only under the assumptions on the boundary value problem, 
made in Section 2. However, in many practical problems these assumptions are 
approximately satisfied. 

Figure 5 shows lolog e^(r, w) for the star 5-point formula, when N = 20. Note that 
the error increases almost exponentially with r, the more so the higher the frequency. 
All the curves in Figs. 5-7 end at I = 1 - h, since e(1, w) = 0 by definition. The 
value of the modifled Bessel function I,(x) is calculated using Tables VII and XVII 
in [9]. This is the only paper giving useful approximations to I,(x) with an error 
<lo-15, for all values of x. 

In [4], a star g-point fromula is described which has been extensively used in cal- 
culations on electric two-tube lenses; see, e.g., [5]. The difference formulas used in 
[4] are: 

uo,i = (-w-2 + 16 * u,,.j-1 + 16 * ~)~,~+l 
- uo,5+2 + 64 - xi - 4 . ~mW'0, 

u1.j = (-%.i-2 + 16 . ul,i-.l + 16 - ~l.~+l 
- xi+2 + 8 - u0.j + 24 - u~,~ - 2 * ~,,~)/60, 

vi.5 = (-%,,-a f 16 * Ui,i--l $ 16 * Ui,i+l - Ud,j+l 

+ (v-1 + l/i) * Vi-2.j + (16 - 8/i) * ui-l,j 
+ (16 + S/i) - ui+l.j + C-1 - l/i) . ui+,,j)/60, 
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FIG. 5. The logarithm of the error Sfr, W) = 1 O(r, W) - Za(wr)/Zo(w)l for the star 5-point formula 
for the Laplace equation in cylindrical coordinates. Note that the error increases almost exponentially 
with r, the more so the higher the frequency. The difference scheme is O(P). 

for 2 d i < N - 2, and 

UN-l,j = C-~--l+-2 + 16 * UN--l,i-1 

+ 16 . UN--l,j+l - V~--l,i+z + (12 - 6/W - 1)) ’ UN-233 

+ (12 + 6/(N - 1)) . ~~A543 

where nisi = V(T, z) = v(i * h, j * h) and N * h = 1 as in Section 2. The formulas 
are all approximations to the Laplace equation (1) with a truncation error O(h4), 
except for the last formulas at the boundary which is B(h2). In the interior the difference 
molecule consists of 9 points arranged like a star. When we Fourier transform these 
difference equations we obtain, in the same way as in Section 2, a system of linear 
equations, which are easily solved. Figure 6 shows the logarithm of the error e^(r, W) 
for different frequencies. Note that the exponential growth for high frequencies is 
enhanced compared to the star 5-point formula in Fig. 5. When comparing Figs. 5 
and 6 it is easily seen that the star g-point formula gives much higher accuracy than 
the star 5-point formula. 

However, compact difference schemes are in general much better than broad 
difference schemes, also when the truncation errors are of the same power of h. 



-2 

-3 

-1 

-5 

-6 

-7 I 

LAPLACE EQUATION DIFFERENCE SCHEMES 111 

/ 
o=lS 

FIG. 6. The logarithm of the error @r, CO) for the star g-point formula. The exponential growth 
of the error is much more pronounced here than in Fig. 5. The difference scheme is O(P), except at 
the boundary where it is O(P). 

In addition, the approximation used at the boundary, which has a truncation 
error 0(h2), is known to give a O(h4)-contribution to the error in the interior points. 
This is of the same size as the error from the truncation term in the interior. 

Let us therefore now consider the compact g-point formula for the Laplace equation 
(l), which is given in [lo]: 

vo,i = (5 - vo,i-1 + 5 . ulJ,j+1 + 7 . Vl*j-* 
+ 34 * vl,j + 7 - ~,,~+,)/58 

and 

v~,~ = [(192 . i3 + 84 * i) * (vi,+r + vi,j+3 
+ (192 . i3 + 96 * i2 + 60 * i + 46) - ~)i+~.i 

+ (192 - i3 - 96 * i2 + 60 * i - 46) . ZQ-~,~ 

+ (48 * i3 + 24 . i2 + 18 * i + 13) * (v~+~.+I -I- Q+I.~+I) 

+ (48 * i3 - 24 * i2 + 18 . i - 13) - (~i-~,+l + u+l,i+l )I/(960 - i3 + 360 * i) 
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FIG. 7. The logarithm of the error @(r, o) for the compact 9-point formula. The error here is in 
general at least a factor of 100 smaller than in Fig. 6. The exponential growth of the error is slower 
than for the star 9-point formula. The sharp dip in the curve for w = 100 is caused by a change in 
sign of the error, and can therefore be completely neglected. The difference scheme is O(H), also at 
the boundary. 

for I <i<N-1, where vi,j=~(~,~)=~(i.h,j.h) and N./r=1 as above. 
The truncation error is for both formulas U(h4). Figure 7 shows the logarithm of the 
error &?(r, W) for the Fourier transformed difference equations. The dip on the curve 
for w = 10 is caused by a change in the sign of the error and can therefore be ignored. 
A comparison with Fig. 6 shows that the error in the compact difference scheme is 
at least 100 times smaller for all frequencies than the error in the broad scheme. 
To our knowledge the compact formula has not been used at all in numerical electron 
optics, while the broad formula has been extensively used. Note also that a computer 
program for solving the Laplace equation (1) numerically is much simpler in structure 
when the compact scheme is used. Also, the round-off errors can accumulate in the 
broad scheme, since the sum of absolute values of the coefficients is 68/60 = 1.13. 
This is never possible in the compact scheme, since all the coefficients there have the 
same sign. The actual gain in computer calculations with the compact scheme depends 
also on the:time required to solve the large system of linear equations, using an iterative 
method or a band-solver. 
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It is easy to calculate the truncation terms for the broad and the compact schemes, 
if we first Fourier transform them. We then find that the compact scheme is better by 
a factor of 4 only, when w = 0, and about the same factor for higher frequencies. 
The great difference between Figs. 6 and 7 is caused, rather, by the error in the diffe- 
rence approximation at the boundary in the broad scheme. This error is propagated 
toward the interior and lowers the accuracy there. We confirmed this by recalculating 
Fig. 6 but now used the exact solution I,,( w - w/z)/&(w) in the point next to the 
boundary and did not use the boundary approximation at all. The result is shown in 
Fig, 8. A comparison between Figs. 7 and 8 shows that &(r, CJJ) in Fig. 8 is slightly 
greater, which is in agreement with the difference in truncation error. In fact the forms 
of the curves in the two figures are almost the same for w < 5. 

FIG. 8. The logarithm of the error &(r, w) for a modification of the star 9-point formula shown 
in fig. 6. The exact value Z,(UJ - wh)/Z,(w) has been used in the point next to the boundary, instead 
of the boundary approximation, which is @(ha). Therefore the error is identically equal to zero for 
r = 1 - h. Note that the forms of the curves are very similar to those in Fig. 7 for w < 5. 
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